Roboter können den Arzt beim Aufspüren und Behandeln von Tumoren unterstützen, indem sie etwa eine feine Sonde an der richtigen Stelle positionieren. Damit die Robotik bildgebende Verfahren wie die Magnetresonanztomographie nicht stört, haben IPA-Ingenieure eine neue Antriebstechnik entwickelt.

Fraunhofer Hydraulikantrieb

Tumortherapie ohne Risiken und Nebenwirkungen? Noch scheint dies undenkbar. Doch in den Laboren arbeiten Wissenschaftler bereits an Lösungen für die Medizin der Zukunft: »Eines der großen Ziele der Forschung ist es, Technologien für minimalinvasive Eingriffe zu entwickeln, mit denen sich Tumore so genau und effizient behandeln lassen, dass kein gesundes Gewebe zerstört wird«, erklärt Johannes Horsch von der Projektgruppe Automatisierung in der Medizin und Biotechnologie PAMB des Fraunhofer IPA.

Sonde mittels Bildgebung positionieren

Zusammen mit seinem Team arbeitet der Ingenieur an Robotern, mit deren Hilfe ein Operateur eine feine Sonde exakt positionieren, eine Probe nehmen oder das Tumorgewebe thermisch behandeln kann. Eine solche Sonde genau an die gewünschte Stelle zu bringen, erfordert handwerkliches Geschick und viel Erfahrung: Wenn der Arzt mit einer Nadel die winzige Sonde einführt, muss er sich mit Hilfe von Bildern orientieren, die die Position auf dem Bildschirm anzeigen. »Bisher werden zur Bildgebung meist röntgenbasierte Methoden eingesetzt. Diese haben jedoch den Nachteil, dass sie Weichgewebe, zum Beispiel Organe, nicht sehr gut darstellen. Außerdem führen sie sowohl beim Arzt wie auch beim Patienten zu einer erhöhten Belastung durch Röntgenstrahlung«, erklärt Horsch.

Größtes Problem: Antriebstechnik

»Mehr Zukunftspotenzial hat daher die Magnetresonanztomographie, kurz MRT.« Noch stoßen Mediziner, die mit Hilfe von MRT-Bildern eine Sonde zu einem Leber-, Lungen- oder Darmtumor führen wollen, schnell an Grenzen: Die Röhre, in welcher der Patient oder die Patientin liegt, lässt dem Operateur kaum Bewegungsfreiheit. Um dieses Problem zu lösen, arbeiten verschiedene Forscherteams auf der ganzen Welt an Robotern, die beim Einführen der Nadel helfen sollen. »Das größte Problem ist die Antriebstechnik«, berichtet Horsch. »Die Motoren, wir sprechen von Aktoren, sollten keine ferromagnetischen oder elektrisch leitfähigen Materialien enthalten, da diese die MRT-Bildgebung stören können. Klassische Elektromotoren scheiden daher aus.« Auch pneumatische Zylinder, die sich nur schwer steuern lassen, seien nicht geeignet.

Kunststoffbälge als Herzstück des Antriebs

Die Lösung der IPA-Ingenieure: ein hydraulischer Roboter-Antrieb. Herzstück dieses Aktors sind mit 3D-Drucktechnik gefertigte Kunststoff-Bälge. Diese sehen aus wie eine kleine Ziehharmonika, die mit einer dünnen, mit Flüssigkeit gefüllten Leitung verbunden ist. Wird die Flüssigkeit unter Druck gesetzt, dehnt sich die Ziehharmonika aus oder biegt sich. Diese Biegung lässt sich nutzen, um einen Roboterarm, der beispielsweise eine Nadelsonde führt, zu bewegen.

Durch Kombination von zwei hydraulischen Aktoren soll der Roboterarm in zwei Raumrichtungen genau gesteuert werden können. Dank eines Kraftrückkoppelungsmechanismus spürt der Chirurg, der den Roboterarm bewegt, wenn die Sonde auf einen Widerstand trifft. »Die eigentliche Innovation besteht darin, dass die Aktoren keine Teile enthalten, welche die MRT-Aufnahmen stören«, resümiert Horsch. Durch die Hydraulik lassen sich große Kräfte in einem kleinen Bauraum erzeugen. Damit sind die Platzprobleme innerhalb der MRT-Röhre gelöst. Man brauche zwar immer noch einen Motor, der den Druck in den Leitungen erzeuge, doch dieser lasse sich gut abgeschirmt in einem Nebenraum unterbringen.

Neue Antriebstechnik erfüllt Erwartungen

Untersuchungen an der Universitätsklinik Mannheim haben jetzt gezeigt, dass die neue Antriebstechnik die Erwartungen erfüllt. »Damit wurde die Grundlage geschaffen für die Entwicklung eines praxistauglichen, robotergestützten Positionierungssystems für Interventionen im MRT«, so Horsch. In einem Folgeprojekt will er gemeinsam mit seinem Team die Biege-Aktoren in einen Roboter einbauen, der ebenfalls mit 3D-Drucktechnik gefertigt werden soll. Dies wollen die Wissenschaftler und Ingenieure in einer präklinischen Studie an Nachbildungen von menschlichen Organen und Geweben, wie sie zum Training von Medizinern verwendet werden, testen.

Das könnte Sie auch interessieren...

Künstliche Intelligenz | Trends und Entwicklungen

Künstliche Intelligenz | Trends und Entwicklungen

Die Künstliche Intelligenz (KI) wird unser Leben in einer Weise verändern, die wir nie für möglich gehalten hätten....
3D Drucker | Additive Fertigung von Kunststoffteilen

3D Drucker | Additive Fertigung von Kunststoffteilen

Ob additive Manufacturing, generative Fertigung oder Rapid Prototyping, hergestellt werden Bauteile in diesen Verfahren...
Industrieller 3D Druck für Metall – Erstaunliche Möglichkeiten

Industrieller 3D Druck für Metall – Erstaunliche Möglichkeiten

Der 3D-Drucker Metall zieht mehr und mehr in die Fertigung ein. Anstatt Tage oder Wochen auf die herkömmliche...
Roboter Programmieren | Software und Steuerung

Roboter Programmieren | Software und Steuerung

Ob es sich um Industrieroboter oder Cobots handelt: Ohne passende Software und ein interaktives Roboter programmieren...
Kunststoffentwicklung: Biobasiert, zirkulär, nachhaltiger

Kunststoffentwicklung: Biobasiert, zirkulär, nachhaltiger

Für den ressourceneffizienten Einsatz von Kunststoffen entwickelt das Fraunhofer-Institut für Umwelt-, Sicherheits- und...
Flexible Solarmodule, rotierende Solarpanel u. a. Photovoltaik

Flexible Solarmodule, rotierende Solarpanel u. a. Photovoltaik

Solarmodule und Photovoltaikanlagen haben im ersten Quartal lt. statistischem Bundesamt circa 8,8 Mrd. kWh Strom aus...