German Dutch English French Italian Japanese Portuguese Russian Spanish
Logo 2014
  • Newsletter

    Für den Erhalt unserer News der Woche können Sie sich hier für unseren Newsletter anmelden

    Weiterlesen
  • Stellenangebote

    Finden Sie passende Jobs und neue Herausforderungen in der Entwicklung in unserer Stellenbörse

    Weiterlesen
  • Messespecial zur SPS IPC Drives

    Hier können Sie noch einmal die Highlights der SPS IPC Drives in Nürnberg sehen.

    Weiterlesen
  • Veranstaltungskalender

    Berufliche Fortbildung ist wichtig: Hier finden Sie Themen und Termine für Entwickler

    Weiterlesen
  • 1
Freitag, Dezember 15, 2017
top ten
konfiguratoren
Fachgebiete Icon Special Icon Messen Icon Interview Icon Webcasts Icon
Literatur Icon News Icon Karriere Icon Veranstaltungen Icon Newsletter Icon

Aktuelles aus der Angewandte Forschung

Elektromobilität, Materialien, Bionik, Medizintechnik, Erneuerbare Energien, Universität, Wissenschaft

Aus den Specials

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

TUKL0315Forschungsbericht

Licht absorbierende Schichten spielen in vielen alltäglichen Anwendungen eine Rolle – zum Beispiel in Solarzellen oder Sensoren. Mit ihrer Hilfe wird Licht in elektrischen Strom oder Wärme umgewandelt. Die Schichten fangen das Licht förmlich ein. Obwohl diese Absorberschichten verbreitet eingesetzt werden, verstehen Wissenschaftler noch nicht, welcher Mechanismus das Einfangen von Licht mit der höchsten Effizienz ermöglicht. Forscher haben nun nachgewiesen, dass sehr effiziente Lichtstreuung in ultradünnen rauen Schichten das einfallende Licht so lange einfängt, bis es vollständig absorbiert ist.


Das Team von Physikern der Universität Bielefeld, der Technischen Universität Kaiserslautern und der Universität Würzburg haben ihre Ergebnisse im Magazin Nature Photonics vorgestellt. Die Forschung kann dabei helfen, dünne Absorberschichten noch effizienter zu machen, um so Energie zu sparen.

Ultradüne Schichten

TUKL20315In den Experimenten wurden ultrakurze Lichtimpulse eingesetzt. Wenn solche Impulse glatte, ultradünne Schichten durchdringen, treten sie auf der anderen Seite fast unverändert und kaum abgeschwächt wieder aus. In rauen Schichten hingegen verhindern Unregelmäßigkeiten, dass der Lichtimpuls sich ungehindert im Material ausbreitet. Bei vielen Unregelmäßigkeiten bewegt sich der Lichtimpuls auf einem geschlossenen Pfad und bleibt so lange gefangen, bis das Licht absorbiert ist.

Zwei Effekte haben den Physikern erlaubt, diesen Mechanismus des Lichteinfangs nachzuweisen. Zum Einem wird vom eingefangenen Licht ein winziger Anteil freigelassen. Die zeitliche Entwicklung dieses Lichts zeigt direkt, wie lange es in der Schicht eingefangen war. Ein zweiter Effekt liefert Informationen über die räumliche Lokalisierung des Lichteinfangs und die lokale Energieabsorption. Die Absorption eines ultrakurzen Lichtimpulses regt Elektronen im Absorbermaterial an und heizt diese kurzfristig auf Temperaturen von mehreren 1000 °C auf – vergleichbar zur Temperatur der Sonnenoberfläche. Bei diesen Temperaturen treten Elektronen aus dem Material aus, welche mittels Elektronenmikroskopie mit hoher räumlicher Auflösung nachgewiesen wurden. Die Messungen zeigen, dass das Licht in kleine Bereiche von etwa 1 µm Durchmesser eingefangen und dort auch absorbiert wird. 

Anderson-Lokalisierung

Der zugrundeliegende Effekt dieser so genannten Anderson-Lokalisierung wurde bereits vor mehr als 60 Jahren beschrieben und seitdem mehrmals nachgewiesen. Neu ist, dass der Mechanismus auch für dünne Absorberschichten funktioniert. „Dies eröffnet neue Wege für die Entwicklung hocheffizienter Absorber und kann so beispielsweise dazu beitragen, Dünnschicht-Solarzellen oder Sensoren zu verbessern“, sagt Professor Dr. Walter Pfeiffer von der Universität Bielefeld. Ziel der Forschung sei es, Dünnschichtabsorber effizienter zu machen, so dass sie im Alltag angewendet werden können. Künftig wollen die Forschenden untersuchen, welche Struktur die Schicht aufweisen muss, um Licht perfekt einzufangen, um dann ein universelles Konzept für die effiziente Lichtabsorption durch Anderson-Lokalisierung zu entwickeln.
weiterer Beitrag des Herstellers          Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

Aktuelle Messespecials

Fachmessen im Überblick

Aktuelle Stellenangebote

Messekalender

Mo Di Mi Do Fr Sa So
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Nächste Veranstaltungstermine

Keine Termine